
SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1068

Parallel Computing Implementation Using GPU

Mohammad Naeemullah

Department of Computer Science

Maulana Azad College, Aurangabad

Received: 22 February 2013

Reviewed & Received: 28 February 2013

Accepted: 28February 2013

 A few years, the programmable graphics processor unit has evolved into an absolute

High performance computing. Simple data-parallel constructs, enabling the use of the GPU as a

streaming coprocessor. A compiler and runtime system that abstracts and virtualizes many

aspects of graphics hardware.

Commodity graphics hardware has rapidly evolved from being a fixed-function pipeline

into having programmable vertex and fragment processors. While this new programmability was

introduced for real-time shading, it has been observed that these processors feature instruction

sets general enough to perform computation beyond the domain of rendering.

Proposed research work is a translation of share memory program to graphics

processing unit for regular loop and irregular loop in parallelism. The theme of this translation

is to make the efficiency to reduce the execution time for the huge amount of data processing for

such an application. An analysis of the effectiveness of the Graphics Processing Unit as a

computing device compared to the Central processing Unit, to determine when the GPU can

produce outstanding result rather than the CPU for a particular algorithm for Application. To

achieve good performance, our translation scheme includes efficient management of shared data

as well as advanced handling of irregular accesses.

Key Words: Parallel Computing, Implementation, GPU.

Abstract

Abstract

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1069

1. INTRODUCTION

 In today’s wired world, person doesn’t want to spend more time to execute the

application on computer. Everyone is interested to get the fast response from computer for this

purpose evolution of High Performance Computing. Less execution time is need of society

whenever large amount of data processing. There are number of situations where only certain

less execution time are require to allowed to use particular application, such as Drawing image

after processing of data.

 GPUs have recently emerged as powerful platform for general purpose High-performance

computing. Programming for GPU is still complex, compared to programming general-purpose.

CPUs and parallel programming models such as share memory programming model. The goal of

this conversion is to further reduce execution time and make existing share memory

programming applications amenable to execution on GPUs. Share memory programming model.

OpenMP[1] has established itself as an important method and language extension for

programming shared-memory parallel computers. While a GPGPU provides an inexpensive,

highly parallel system to application developers, its programming complexity poses a significant

challenge for developers. There has been growing research and industry interest in lowering the

barrier of programming these devices.

There are several advantages of share memory programming model as a programming

paradigm for GPUs.

• Share memory programming model is efficient at expressing loop-level parallelism in

applications, which is a target for utilizing GPUs highly parallel computing units to accelerate

data parallel computations.

• The concept of a master thread and a pool of worker threads in share memory programming

model fork-join model represents well the relationship between the master thread running in a

host CPU and a pool of threads in a GPU device.

• Parallelization of applications, which is one of share memory programming model features, can

add the same benefit to GPU programming model.

 The GPU programming model provides a general-purpose multi-threaded Single

Instruction, Multiple Data (SIMD) model for implementing general-purpose computations on

GPUs. Although the unified processor model in GPU[14,16] architectures for better

programmability, its unique memory architecture is exposed to programmers to some extent.

Therefore, the manual development of high-performance codes in GPU programming model is

more involved than in other parallel programming models such as share memory programming

model.

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1070

 In this Research, developed a CPU parallel computing to GPU parallel computing

converter to extend the ease of creating parallel applications with share memory programming to

GPU architectures. Due to the similarity between share memory programming and GPU

programming models, we were able to convert hare memory parallelism, basically loop-level

parallelism, into the forms that best express parallelism in GPU. Performance gaps are due to

architectural differences between traditional shared-memory multiprocessors (SMP),

implemented by share memory programming, and stream architectures, accepted by most GPU

[14,6]. Most existing share memory programs were tuned to more efficient for fast access to

regular, consecutive elements of the data stream.

2. RELATED WORK

 GPU programming model, programming GPUs was very difficult, requiring deep

knowledge of the underlying hardware and graphics programming interfaces. Although the GPU

programming model provides improved programmability, achieving high performance with GPU

parallel programs is still difficult. Several studies have been conducted to develop the

performance of GPU applications. In these contributions, optimizations were performed

manually.

 For the automatic optimization of GPU programs, a compile time transformation scheme

[2] has been developed, which finds program transformations that can lead to efficient global

memory access. The proposed compiler framework optimizes affine loop nests using a

polyhedral compiler model. By contrast, our compiler framework optimizes irregular loops, as

well as regular loops.

 Moreover, in propose research framework performs well on actual benchmarks as well as

on GPU functions. GPU-lite [18] is another translator, which generates codes for optimal tiling

of global memory data. GPU-lite relies on information that a programmer provides via

annotations, to perform transformations. Our approach is similar to GPU-lite in that we also

support special annotations provided by a programmer. In our compiler framework, however, the

necessary information is automatically extracted from the Open MP directives, and the

annotations provided by a programmer are used for fine tuning.

 Open MP is an industry standard directive language, widely used for parallel

programming on shared memory systems. Due to its well established model and convenience of

incremental parallelization, the share memory programming model has been ported to a variety

of platforms. Previously, we have developed compiler techniques to translate share memory

applications into a form suitable for execution on a Software Distributed Shared Memory (DSM)

system [10, 11] and another compile-time translation scheme to convert share memory programs

into MPI message-passing programs for execution on distributed memory systems [3]. Recently,

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1071

there have been several efforts to map share memory to Cell architectures [12, 19]. Our approach

is similar to the previous work in that share memory parallelism, specified by work-sharing

constructs, is exploited to distribute work among participating threads or processes, and share

memory data environment directives are used to map data into underlying memory systems.

However, different memory architectures and execution models among the underlying platforms

pose various challenges in mapping data and enforcing synchronization for each architecture,

resulting in differences in optimization strategies.

 MCUDA [16] is an opposite approach, which maps the CUDA programming model onto

the conventional shared-memory CPU architecture. MCUDA can be used as a tool to apply the

GPU programming model[8,9] for developing data-parallel applications running on traditional

shared-memory parallel systems. By contrast, our motivation is to reduce the complexity residing

in the CUDA programming model, with the help of OpenMP, which we consider to be an easier

model. In addition to the ease of creating CUDA programs with OpenMP, our system provides

several compiler optimizations to reduce the performance gap between hand-optimized programs

and auto-translated ones.

 To bridge the specification gap between domain-specific algorithms and current GPU

programming models such as Brook, a framework for scalable execution of domain-specific

templates on GPUs has been proposed. This research work is the problem of partitioning the

computations that do not fit into GPU memory.

 However, the architectural differences between GPU and vector systems [9] different

challenges in applying these techniques, leading to different directions; parallel loop exchange

and loop overlapping transformations are techniques to expose stride-one accesses in a program

so that concurrent GPU threads can use the coalesced memory accesses to optimize the off chip

memory performance.

3. OVERVIEW OF THE CUDA PROGRAMMINGMODEL

CUDA stands for Compute Unified Device Architecture and is a new hardware and

software architecture for issuing and managing computations on the GPU as a data-parallel

computing device without the need of mapping them to a graphics API. It is available for the

GeForce 8 Series, the Tesla solutions, and some Quadro solutions. The operating system’s

multitasking mechanism is responsible for managing the access to the GPU by several CUDA

and graphics applications running concurrently.

 The CUDA software stack is composed of several a hardware driver, an application

programming interface (API) and its runtime, and two higher-level mathematical libraries of

common usage, CUFFT and CUBLAS that are both described in separate documents. The

hardware has been designed to support lightweight driver and runtime layers, resulting in high

performance.

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1072

 CUDA provides general DRAM memory addressing for more programming flexibility:

both scatter and gather memory operations. From a programming perspective, this translates into

the ability to read and write data at any location in DRAM, just like on a CPU.

 CUDA features a parallel data cache or on-chip shared memory with very fast general

read and write access, that threads use to share data with each other. The applications can take

advantage of it by minimizing over fetch and round-trips to DRAM and therefore becoming less

dependent on DRAM memory bandwidth.

3.1 HARDWARE IMPLEMENTATION

3.1.1 A Set of SIMD Multiprocessors with On-Chip Shared Memory

 The device is implemented as a set of multiprocessors, Each multiprocessor has a Single

Instruction, Multiple Data architecture (SIMD): At any given clock cycle, each processor of the

multiprocessor executes the same instruction, but operates on different data.

Each multiprocessor has on-chip memory of the four following types:

 One set of local 32-bit registers per processor,

 A parallel data cache or shared memory that is shared by all the processors and

implements the shared memory space,

 A read-only constant cache that is shared by all the processors and speeds up reads

from the constant memory space, which is implemented as a read-only region of

device memory,

 A read-only texture cache that is shared by all the processors and speeds up reads

from the texture memory space, which is implemented as a read-only region of device

memory.

4. EXPERIMENTAL METHOD AND PROPOSED ALGORITHM

4.1 PROPOSED SYSTEM

 This research introduces methods for transfer the load from Central processing Unit to

Graphics processing unit for High Performance Computing. Parallel Computing is an area of

High Performance Computing that has reduce the execution time of Algorithm. Parallel

computing always produce the less execution time compare to serial computing.

 To isolate CPU-intensive parallelization functionality into mostly independent logical

threads, tasks, or jobs, so that each core or CPU can get its thread(s),spreading the overall load

that load transfer from CPU to GPU.

 A source to source transformation of share memory programming model to graphics

processing unit programming model.

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1073

 A growing demand for High performance computing is operation of huge amount of data

processing. This work is to carry out the High Performance Computing using the parallel

programming model (share memory programming model) iterated execution of individual thread

on separate core, which is in GPU.

This Research work revolve on compilation system

Figure: 1 Block Diagram of Transfer the source code

 To bridge the specification gap between domain-specific algorithms and current GPU

programming models such as Brook, a framework for scalable execution of domain-specific

templates on GPUs has been proposed. This research work is the problem of partitioning the

computations that do not fit into GPU memory.

 However, the architectural differences between GPU and vector systems [9] different

challenges in applying these techniques, leading to different directions; parallel loop exchange

and loop overlapping transformations are techniques to expose stride-one accesses in a program

so that concurrent GPU threads can use the coalesced memory accesses to optimize the off chip

memory performance.

4.2 PERFORMANCE EVALUATION

 This section presents the performance of the presented share memory programming

model to graphics processing unit. I have used an NVIDIA Quadro FX 5600 GPU as an

experimental platform. The device has 16 multiprocessors with a clock rate of 1.35 GHz and

1.5GB of DRAM. Each multiprocessor is equipped with 8 SIMD processing units, totaling 128

processing units. The device is connected to a host system consisting of Dual-Core AMD 3 GHz

Opteron processors. Because the tested GPU does not support double precision, we manually

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1074

converted the OpenMP source programs into single precision before feeding them to our

translator.

 (NVIDIA recently announced GPUs supporting double precision computations).

compiled the translated CUDA programs with the NVIDIA CUDA Compiler (NVCC) to

generate device code. Compiled the host programs with the GCC compiler version 4.2.3, using

option -O3.

 Matrix Multiplication is a widely used kernel containing the main loop of an iterative

solver for regular scientific applications. Due to its simple structure, the Matrix kernel is easily

parallelized in many parallel programming models. Baseline represents the execution GPU

version over serial on the CPU. This performance degradation is mostly due to the overhead in

large, uncoalesced global memory access patterns. These uncoalesced access patterns can be

changed to coalesced ones by applying parallel loop-swap. These results demonstrate that, in

regular programs, uncoalesced global memory accesses may be converted to coalesced accesses

by loop transformation optimizations. After making the comparison between serial and parallel,

we have to make the comparison between OpenMp program and GPU (brook+) program. Table

2 shows the execution time of both the programs.

5. RESULTS AND DISCUSSION

Table 1: GPU AND OPENMP PROGRAM EXECUTION TIME OF MATRIX

MULTIPLICATION

Size of matrix Execution time of

GPU program Before

Memory Tuning

Execution time of

GPU program After

Memory Tuning

256 by 256 1.02 1.184087 sec

256 by 512 2.01 1.706772 sec

256 by 712 2.77 4.103025 sec

512 by 512 3.99 8.817162 sec

1024 by 1024 16.03 26.23562 sec

2048 by 2048 29.15 56.3621 sec

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1075

Table 2: GPU AND OPENMP PROGRAM EXECUTION TIME OF MATRIX

MULTIPLICATION AFTER MEMORY TUNING

Size of matrix Execution time of

GPU program

Execution time of

OpenM program

256 by 256 0.960201 1.184087 sec

256 by 512 1.099560 1.706772 sec

256 by 712 1.965801 4.103025 sec

512 by 512 3.102356 8.817162 sec

1024 by 1024 12.03 26.23562 sec

2048 by 2048 20.15 56.3621 sec

Table: 3 COMPARISION OF GPU EXECUTION TIME OF MATRIX

MULTIPLICATION BEFORE AND AFTER MEMORY TUNNING

Size of matrix Execution time of

GPU program Before

Memory Tuning

Execution time of

GPU program After

Memory Tuning

256 by 256 1.02 0.960201

256 by 512 2.01 1.099560

256 by 712 2.77 1.965801

512 by 512 3.99 3.102356

1024 by 1024 16.03 12.03

2048 by 2048 29.15 20.15

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1076

Comparison of GPU execution time of matrix

multiplication before and after memory tunning

0

5

10

15

20

25

30

35

256 by

256

256 by

512

256 by

712

512 by

512

1024 by

1024

2048 by

2048

size of matrix

e
x

e
c

u
ti

o
n

 t
im

e
Execution time of

GPU program After

Memory Tuning
Execution time of

GPU program Before

Memory Tuning

Figure 2 Shows Comparison of GPU execution time of matrix multiplication before and

after memory tuning

The table 3 shows the information about comparison between the memory of GPU

program, while execution is going on. In which the execution time reduces after tuning the

memory operation (data transmission of GPU to CPU).

 The matrix multiplication program has been executed before and after memory tuning the

significant time difference has been observed and noted. The matrix multiplication program of

size 256 by 256 has been executed before memory tuning the time taken is 1.02 and after

memory tuning execution time noted is 0.960201. The execution time for matrix multiplication

of size 256 by 512 before memory tuning is 2.01 and after memory tuning it has noted 1.099560.

The execution time for matrix multiplication of size 256 by 712 before memory tuning is 2.77

and after memory tuning it has noted 1.965801. The execution time for matrix multiplication of

size 512 by 512 before memory tuning is 3.99 and after memory tuning it has noted 3.102356.

The execution time for matrix multiplication of size 1024 by 1024 before memory tuning is

16.03 and after memory tuning it has noted 12.03. The execution time for matrix multiplication

of size 2048 by 2048 before memory tuning is 29.15 and after memory tuning it has noted 20.15.

 The significant difference has been observed in execution time before and after memory

tuning. As the size of matrix increases the execution time difference before and after memory

tuning increases. The execution time observed after memory tuning is less than before memory

tuning.

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1077

6. CONCLUSION

 OpenMP appears to be a good fit for GPGPUs. It also identified several key

transformation techniques to enable efficient GPU global memory access: parallel loop-swap and

matrix transpose techniques for regular applications, and loop collapsing for irregular ones.

Proposed translation aims at offering an easier programming model for general computing on

GPGPUs. By applying OpenMP as a front-end programming model, the proposed translator

could convert the loop-level parallelism of the OpenMP programming model into the data

parallelism of the OpenGL programming model in a natural way. Ongoing work focuses on

transformation techniques for efficient GPU global memory access which includes automatic

tuning of optimizations to exploit shared memory and other special memory units.

 Translating standard OpenMP shared-memory programs into MPI message passing

variants, based on a novel model of partial replication. The contributions include a new

algorithm to compute message sets, techniques for statically handling irregular accesses, and

optimizations based on collective communication. Partial replication contrasts with data

distribution models, as used in HPF-like languages, in which a single node owns a (partition of a)

shared array. Partial replication simplifies the generation of messages, which holds for irregular

accesses. Exploiting monotonicity properties of index arrays, our techniques were able to handle

all message generation for irregular accesses in our program suite statically.

REFERENCES

1. OpenMP [online]. available: http://openmp.org/wp/.

2. M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and

 P. Sadayappan.A compiler framework for optimization of affine loop nests for GPGPUs.

 ACM International Conference on Supercomputing (ICS), 2008.

3. N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory model for scientific

algorithms on graphics processors. International Conference for High Performance

 Computing, Networking, Storage and Analysys (SC), 2006.

4. Seung-Jai Min, Ayon Basumallik, and Rudolf Eigenmann. Optimizing OpenMP programs

on software distributed shared memory systems. International Journel of Parallel

 Programming (IJPP), 31:225249, June 2003.

5. Tim Davis. University of Florida Sparse Matrix Collection [online]. available:

http://www.cise.ufl.edu/

http://openmp.org/wp/
http://www.cise.ufl.edu/

SRJIS/ Bimonthly/ Mohammad Naeemullah (1068-1078)

JAN-FEB, 2013, Vol. – I, Issue-IV www.srjis.com Page 1078

6. Data-Parallel Algorithms: Parallel Reduction [online]. available:

http://developer.download.nvidia.com/cuda/1 1/Website/Data-Parallel Algorithms.html.

7. ATI, 2004. Hardware image processing using ARB fragment program.

http://www.ati.com/developer/sdk/RadeonSDK/Html/Samples/ OpenGL/HW Image

Processing.html.

8. Brook, 2004. Brook project web page. http://brook.sourceforge.net

9. NVIDIA CUDA SDK - Data-Parallel Algorithms: Parallel Reduction [online]. available:

http://developer.download.nvidia.com/compute/ cuda/1 1/Website/Data-Parallel

Algorithms.html.

10. Tim Davis. University of Florida Sparse Matrix Collection [online] available:

http://www.cise.ufl.edu/research/sparse/matrices/.

11. Sang Ik Lee, Troy Johnson, and Rudolf Eigenmann. Cetus - an extensible compiler

infrastructure for source-to-source transformation. International Workshop on

Languages and Compilers for Parallel Computing (LCPC), 2003.

12. David Levine, David Callahan, and Jack Dongarra. A comparative study of automatic

vectorizing compilers. Parallel Computing, 17, 1991.

13. K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang. Supporting OpenMP on Cell.

International Journel of Parallel Programming (IJPP), 36(3):289–311, June 2008.

14. ATI, 2004. Hardware image processing using ARB fragment program.

 http://www.ati.com/developer/sdk/RadeonSDK/Html/Samples OpenGL/HW Image

Processing.html.

15. England, N. 1986. A graphics system architecture for interactive application-specic

display functions. In IEEE CGA, 60-70.

16. Fuchs, H., Poulton, J., Eyles, J., Greer, T., Gold- feather, J., Ellsworth, D., Molnar, S.,

Turk, G., Tebbs, B., and Israel, L. 1989. Pixel-Planes 5: a heterogeneous multiprocessor

graphics system using processorenhanced memories. In Computer Graphics (Proceedings

of ACM SIGGRAPH 89), ACM Press, 79 – 88.

17. Intel, 2004. Intel math kernel library. http://www.intel.com/software/products/mkl

18. J. Li andM. Chen. Compiling communication-efficient programs for massively parallel

machines. IEEE Trans. Parallel Distrib. Syst., 2(3):361–376, 1991.

19. P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular

section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360,

1991.

http://brook.sourceforge.net/
http://developer.download.nvidia.com/compute/
http://www.intel.com/software/products/mkl

