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 A few years, the programmable graphics processor unit has evolved into an absolute 

High performance computing. Simple data-parallel constructs, enabling the use of the GPU as a 

streaming coprocessor. A compiler and runtime system that abstracts and virtualizes many 

aspects of graphics hardware. 

Commodity graphics hardware has rapidly evolved from being a fixed-function pipeline 

into having programmable vertex and fragment processors. While this new programmability was 

introduced for real-time shading, it has been observed that these processors feature instruction 

sets general enough to perform computation beyond the domain of rendering. 

Proposed research work is a translation of share memory program to graphics 

processing unit for regular loop and irregular loop in parallelism. The theme of this translation 

is to make the efficiency to reduce the execution time for the huge amount of data processing for 

such an application. An analysis of the effectiveness of the Graphics Processing Unit as a 

computing device compared to the Central processing Unit, to determine when the GPU can 

produce outstanding result rather than the CPU for a particular algorithm for Application. To 

achieve good performance, our translation scheme includes efficient management of shared data 

as well as advanced handling of irregular accesses. 
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1. INTRODUCTION 

 In today’s wired world, person doesn’t want to spend more time to execute the 

application on computer. Everyone is interested to get the fast response from computer for this 

purpose evolution of High Performance Computing. Less execution time is need of society 

whenever large amount of data processing. There are number of situations where only certain 

less execution time are require to allowed to use particular application, such as Drawing image 

after processing of data. 

 GPUs have recently emerged as powerful platform for general purpose High-performance 

computing. Programming for GPU is still complex, compared to programming general-purpose. 

CPUs and parallel programming models such as share memory programming model. The goal of 

this conversion is to further reduce execution time and make existing share memory 

programming applications amenable to execution on GPUs. Share memory programming model. 

OpenMP[1] has established itself as an important method and language extension for 

programming shared-memory parallel computers. While a GPGPU provides an inexpensive, 

highly parallel system to application developers, its programming complexity poses a significant 

challenge for developers.  There has been growing research and industry interest in lowering the 

barrier of programming these devices.    

There are several advantages of share memory programming model as a programming 

paradigm for GPUs. 

• Share memory programming model is efficient at expressing loop-level parallelism in 

applications, which is a target for utilizing GPUs highly parallel computing units to accelerate 

data parallel computations. 

• The concept of a master thread and a pool of worker threads in share memory programming 

model fork-join model represents well the relationship between the master thread running in a 

host CPU and a pool of threads in a GPU device. 

• Parallelization of applications, which is one of share memory programming model features, can 

add the same benefit to GPU programming model. 

 The GPU programming model provides a general-purpose multi-threaded Single 

Instruction, Multiple Data (SIMD) model for implementing general-purpose computations on 

GPUs. Although the unified processor model in GPU[14,16]  architectures for better 

programmability, its unique memory architecture is exposed to programmers to some extent. 

Therefore, the manual development of high-performance codes in GPU programming model is 

more involved than in other parallel programming models such as share memory programming 

model. 
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 In this Research, developed a CPU parallel computing to GPU parallel computing 

converter to extend the ease of creating parallel applications with share memory programming  to 

GPU architectures. Due to the similarity between share memory programming and GPU 

programming models, we were able to convert hare memory  parallelism, basically loop-level 

parallelism, into the forms that best express parallelism in GPU. Performance gaps are due to 

architectural differences between traditional shared-memory multiprocessors (SMP), 

implemented by share memory programming, and stream architectures, accepted by most GPU 

[14,6].  Most existing share memory programs were tuned to more efficient   for fast access to 

regular, consecutive elements of the data stream. 

2. RELATED WORK 

 GPU programming model, programming GPUs was very difficult, requiring deep 

knowledge of the underlying hardware and graphics programming interfaces. Although the GPU 

programming model provides improved programmability, achieving high performance with GPU 

parallel programs is still difficult. Several studies have been conducted to develop the 

performance of GPU applications. In these contributions, optimizations were performed 

manually. 

 For the automatic optimization of GPU programs, a compile time transformation scheme 

[2] has been developed, which finds program transformations that can lead to efficient global 

memory access. The proposed compiler framework optimizes affine loop nests using a 

polyhedral compiler model. By contrast, our compiler framework optimizes irregular loops, as 

well as regular loops. 

 Moreover, in propose research framework performs well on actual benchmarks as well as 

on GPU functions. GPU-lite [18] is another translator, which generates codes for optimal tiling 

of global memory data. GPU-lite relies on information that a programmer provides via 

annotations, to perform transformations. Our approach is similar to GPU-lite in that we also 

support special annotations provided by a programmer. In our compiler framework, however, the 

necessary information is automatically extracted from the Open MP directives, and the 

annotations provided by a programmer are used for fine tuning. 

 Open MP is an industry standard directive language, widely used for parallel 

programming on shared memory systems. Due to its well established model and convenience of 

incremental parallelization, the share memory programming model has been ported to a variety 

of platforms. Previously, we have developed compiler techniques to translate share memory 

applications into a form suitable for execution on a Software Distributed Shared Memory (DSM) 

system [10, 11] and another compile-time translation scheme to convert share memory  programs 

into MPI message-passing programs for execution on distributed memory systems [3]. Recently, 
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there have been several efforts to map share memory to Cell architectures [12, 19]. Our approach 

is similar to the previous work in that share memory parallelism, specified by work-sharing 

constructs, is exploited to distribute work among participating threads or processes, and share 

memory data environment directives are used to map data into underlying memory systems. 

However, different memory architectures and execution models among the underlying platforms 

pose various challenges in mapping data and enforcing synchronization for each architecture, 

resulting in differences in optimization strategies. 

 MCUDA [16] is an opposite approach, which maps the CUDA programming model onto 

the conventional shared-memory CPU architecture. MCUDA can be used as a tool to apply the 

GPU programming model[8,9] for developing data-parallel applications running on traditional 

shared-memory parallel systems. By contrast, our motivation is to reduce the complexity residing 

in the CUDA programming model, with the help of OpenMP, which we consider to be an easier 

model. In addition to the ease of creating CUDA programs with OpenMP, our system provides 

several compiler optimizations to reduce the performance gap between hand-optimized programs 

and auto-translated ones. 

 To bridge the specification gap between domain-specific algorithms and current GPU 

programming models such as Brook, a framework for scalable execution of domain-specific 

templates on GPUs has been proposed. This research work is the problem of partitioning the 

computations that do not fit into GPU memory. 

 However, the architectural differences between  GPU and vector systems [9]  different 

challenges in applying these techniques, leading to different directions; parallel loop exchange 

and loop  overlapping  transformations are techniques to expose stride-one accesses in a program 

so that concurrent GPU threads can use the coalesced memory accesses to optimize the off chip 

memory performance. 

3. OVERVIEW OF THE CUDA PROGRAMMINGMODEL 

CUDA stands for Compute Unified Device Architecture and is a new hardware and 

software architecture for issuing and managing computations on the GPU as a data-parallel 

computing device without the need of mapping them to a graphics API. It is available for the 

GeForce 8 Series, the Tesla solutions, and some Quadro solutions. The operating system’s 

multitasking mechanism is responsible for managing the access to the GPU by several CUDA 

and graphics applications running concurrently.  

 The CUDA software stack is composed of several a hardware driver, an application 

programming interface (API) and its runtime, and two higher-level mathematical libraries of 

common usage, CUFFT and CUBLAS that are both described in separate documents. The 

hardware has been designed to support lightweight driver and runtime layers, resulting in high 

performance. 
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 CUDA provides general DRAM memory addressing for more programming flexibility: 

both scatter and gather memory operations. From a programming perspective, this translates into 

the ability to read and write data at any location in DRAM, just like on a CPU. 

 CUDA features a parallel data cache or on-chip shared memory with very fast general 

read and write access, that threads use to share data with each other. The applications can take 

advantage of it by minimizing over fetch and round-trips to DRAM and therefore becoming less 

dependent on DRAM memory bandwidth. 

3.1 HARDWARE IMPLEMENTATION  

3.1.1 A Set of SIMD Multiprocessors with On-Chip Shared Memory  

 The device is implemented as a set of multiprocessors, Each multiprocessor has a Single 

Instruction, Multiple Data architecture (SIMD): At any given clock cycle, each processor of the 

multiprocessor executes the same instruction, but operates on different data.  

Each multiprocessor has on-chip memory of the four following types:  

 One set of local 32-bit registers per processor,  

 A parallel data cache or shared memory that is shared by all the processors and 

implements the shared memory space,  

 A read-only constant cache that is shared by all the processors and speeds up reads 

from the constant memory space, which is implemented as a read-only region of 

device memory,  

 A read-only texture cache that is shared by all the processors and speeds up reads 

from the texture memory space, which is implemented as a read-only region of device 

memory.  

4. EXPERIMENTAL METHOD AND PROPOSED ALGORITHM  

4.1 PROPOSED SYSTEM 

 This research introduces methods for transfer the load from Central processing Unit to 

Graphics processing unit for High Performance Computing. Parallel Computing is an area of 

High Performance Computing that has reduce the execution time of Algorithm. Parallel 

computing always produce the less execution time compare to serial computing. 

 To isolate CPU-intensive parallelization functionality into mostly independent logical 

threads,   tasks, or jobs, so that each core or CPU can get its thread(s),spreading the overall load 

that load transfer from CPU to GPU. 

 A source to source transformation of share memory programming model to graphics 

processing unit programming model. 
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 A growing demand for High performance computing is operation of huge amount of data 

processing. This work is to carry out the High Performance Computing using the parallel 

programming model (share memory programming model) iterated execution of individual thread 

on separate core, which is in GPU.    

This Research work revolve on compilation system 

 

Figure: 1 Block Diagram of Transfer the source  code  

 To bridge the specification gap between domain-specific algorithms and current GPU 

programming models such as Brook, a framework for scalable execution of domain-specific 

templates on GPUs has been proposed. This research work is the problem of partitioning the 

computations that do not fit into GPU memory. 

 However, the architectural differences between  GPU and vector systems [9]  different 

challenges in applying these techniques, leading to different directions; parallel loop exchange 

and loop  overlapping  transformations are techniques to expose stride-one accesses in a program 

so that concurrent GPU threads can use the coalesced memory accesses to optimize the off chip 

memory performance. 

4.2  PERFORMANCE EVALUATION 

 This section presents the performance of the presented share memory programming 

model to graphics processing unit. I have used an NVIDIA Quadro FX 5600 GPU as an 

experimental platform. The device has 16 multiprocessors with a clock rate of 1.35 GHz and 

1.5GB of DRAM. Each multiprocessor is equipped with 8 SIMD processing units, totaling 128 

processing units. The device is connected to a host system consisting of Dual-Core AMD 3 GHz 

Opteron processors. Because the tested GPU does not support double precision, we manually 
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converted the OpenMP source programs into single precision before feeding them to our 

translator. 

 (NVIDIA recently announced GPUs supporting double precision computations).  

compiled the translated CUDA programs with the NVIDIA CUDA Compiler (NVCC) to 

generate device code. Compiled the host programs with the GCC compiler version 4.2.3, using 

option -O3. 

 Matrix Multiplication is a widely used kernel containing the main loop of an iterative 

solver for regular scientific applications. Due to its simple structure, the Matrix kernel is easily 

parallelized in many parallel programming models. Baseline represents the execution GPU 

version over serial on the CPU. This performance degradation is mostly due to the overhead in 

large, uncoalesced global memory access patterns. These uncoalesced access patterns can be 

changed to coalesced ones by applying parallel loop-swap. These results demonstrate that, in 

regular programs, uncoalesced global memory accesses may be converted to coalesced accesses 

by loop transformation optimizations. After making the comparison between serial and parallel, 

we have to make the comparison between OpenMp program and GPU (brook+) program. Table 

2 shows the execution time of both the programs. 

5. RESULTS AND DISCUSSION 

Table 1: GPU AND OPENMP PROGRAM EXECUTION TIME OF MATRIX 

MULTIPLICATION 

Size of matrix Execution time of 

GPU program Before  

Memory Tuning 

Execution time of 

GPU program After  

Memory Tuning 

256 by 256 1.02 1.184087 sec 

256 by 512 2.01 1.706772 sec 

256 by 712 2.77 4.103025 sec 

512 by 512 3.99 8.817162 sec 

1024 by 1024 16.03 26.23562 sec 

2048 by 2048 29.15 56.3621 sec 
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Table 2: GPU AND OPENMP PROGRAM EXECUTION TIME OF MATRIX 

MULTIPLICATION AFTER MEMORY TUNING 

Size of matrix Execution time of 

GPU program 

Execution time of 

OpenM    program 

256 by 256 0.960201 1.184087 sec 

256 by 512 1.099560 1.706772 sec 

256 by 712 1.965801 4.103025 sec 

512 by 512 3.102356 8.817162 sec 

1024 by 1024 12.03 26.23562 sec 

2048 by 2048 20.15 56.3621 sec 

 

Table: 3 COMPARISION OF GPU EXECUTION TIME OF MATRIX 

MULTIPLICATION BEFORE AND AFTER MEMORY TUNNING 

Size of matrix Execution time of 

GPU program Before  

Memory Tuning 

Execution time of 

GPU program After  

Memory Tuning 

256 by 256 1.02 0.960201 

256 by 512 2.01 1.099560 

256 by 712 2.77 1.965801 

512 by 512 3.99 3.102356 

1024 by 1024 16.03 12.03 

2048 by 2048 29.15 20.15 
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Comparison of GPU execution time of matrix 

multiplication before and after memory tunning
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Figure 2 Shows Comparison of GPU execution time of matrix multiplication before and 

after memory tuning 

The table 3 shows the information about comparison between the memory of GPU 

program, while execution is going on. In which the execution time reduces after tuning the 

memory operation (data transmission of GPU to CPU). 

 The matrix multiplication program has been executed before and after memory tuning the 

significant time difference has been observed and noted. The matrix multiplication program of 

size 256 by 256 has been executed before memory tuning the time taken is 1.02 and after 

memory tuning execution time noted is 0.960201. The execution time for matrix multiplication 

of size 256 by 512 before memory tuning is 2.01 and after memory tuning it has noted 1.099560. 

The execution time for matrix multiplication of size 256 by 712 before memory tuning is 2.77 

and after memory tuning it has noted 1.965801. The execution time for matrix multiplication of 

size 512 by 512 before memory tuning is 3.99 and after memory tuning it has noted 3.102356. 

The execution time for matrix multiplication of size 1024 by 1024 before memory tuning is 

16.03 and after memory tuning it has noted 12.03. The execution time for matrix multiplication 

of size 2048 by 2048 before memory tuning is 29.15 and after memory tuning it has noted 20.15. 

 The significant difference has been observed in execution time before and after memory 

tuning. As the size of matrix increases the execution time difference before and after memory 

tuning increases. The execution time observed after memory tuning is less than before memory 

tuning. 
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6. CONCLUSION 

 OpenMP appears to be a good fit for GPGPUs. It also identified several key 

transformation techniques to enable efficient GPU global memory access: parallel loop-swap and 

matrix transpose techniques for regular applications, and loop collapsing for irregular ones. 

Proposed translation aims at offering an easier programming model for general computing on 

GPGPUs. By applying OpenMP as a front-end programming model, the proposed translator 

could convert the loop-level parallelism of the OpenMP programming model into the data 

parallelism of the OpenGL programming model in a natural way. Ongoing work focuses on 

transformation techniques for efficient GPU global memory access which includes automatic 

tuning of optimizations to exploit shared memory and other special memory units. 

 Translating standard OpenMP shared-memory programs into MPI message passing 

variants, based on a novel model of partial replication. The contributions include a new 

algorithm to compute message sets, techniques for statically handling irregular accesses, and 

optimizations based on collective communication. Partial replication contrasts with data 

distribution models, as used in HPF-like languages, in which a single node owns a (partition of a) 

shared array. Partial replication simplifies the generation of messages, which holds for irregular 

accesses. Exploiting monotonicity properties of index arrays, our techniques were able to handle 

all message generation for irregular accesses in our program suite statically. 
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